Motor selection example

Motor selection guide:

The proper motor selection is done in three steps:

- I. Definition of motion profile
- II. Continuous and peak forces calculation
- III. Motor selection

I. Definition of motion profile

There is a wide range of different motion profiles which can be expressed by basic kinematics equations. The most useful is trapezoid point to point moving profile and triangular profile.

Moving input data:

L	moving distance (stroke)	[m]
t	moving time	[s]
ta	acceleration time	[s]
t _{off}	pause	[s]

Average velocity is expressed by:

$$v = \frac{L}{t} [m/s]$$

Max speed is defined as:

$$v_{max} = \frac{L}{t - t_a}$$

Acceleration/deceleration is defined by:

$$a = \frac{V_{max}}{t_a}$$

Where is:

	average velocity	[m/s]
V _{max}	maximum velocity	[m/s]
L	moving distance	[m]
t	moving time	[s]
ta	acceleration time	[s]
а	acceleration/deceleration	[m/s ²]

Triangle profile:

Moving input data:

L	moving distance (stroke)	[m]
t	moving time	[s]
ta	acceleration time	[s]
t _{off}	pause	[s]

Average velocity is expressed by:

$$v = \frac{L}{t} [m/s]$$

Acceleration/deceleration are defined by:

$$a = \frac{4 * L}{t^2}$$

Max speed is defined as:

$$v_{max} = \frac{a}{t_a}$$

Where is:

v	average velocity	[m/s]
V _{max}	maximum velocity	[m/s]
L	moving distance	[m]
t	moving time	[s]
ta	acceleration time	[s]
а	acceleration/deceleration	[m/s ²]

II. Continuous and peak force calculation

There is a wide range of different motion profiles which can be expressed by basic kinematics equations. The most useful is trapezoid point to point moving profile and triangular profile.

Input parameters:

m _{load}	load mass	[kg]
K _{fri}	friction coefficient (usually 0,01)	
F _A	attraction force (you can find it in motor specification)	[N]
α	inclination angle	[°]

The peak forces can be calculated by the following equation:

 $F_p = F_{mass} + F_{fri} + F_{incl}$

 $F_{mass} = a * m_{load}$

 $F_{fri} = K_{fri}(g * m_{load} * cos\alpha + F_A)$

 $F_{incl} = m_{load} * g * sin\alpha$

Where is:

F _p	peak force	[N]
а	acceleration	[m/s ²]
m _{load}	load mass	[kg]
K _{fri}	friction coefficient (usually 0,01)	
g	gravity constant (9,78)	[m/s ²]
F _A	attraction force	[N]
α	inclination angle	[°]
Finel	inclination force (in case if motor is placed horizontal ($\alpha = 0^{\circ}$) the Finel is 0)	[N]

The continuous forces can be calculated by following equation:

$$F_{C} = \sqrt{\frac{F_{p}^{2} * t_{a} + (F_{fri} + F_{inc})^{2} * (t - 2t_{a}) + (F_{mass} + F_{incl} - F_{fri})^{2} * t_{a}}{t + t_{off}}}$$

III. Motor selection

Define motor RMS and MAX current:

$I_{MAX} = \frac{F_p}{K_F}$	< I _p from motor specification.
$I_{RMS} = \frac{F_c}{K_F}$	< I_C from motor specification.

Where is:

F _P	Peak force	[N]
Fc	Continuous force	[N]
K _F	Force constant (you can find it in motor parameters)	[N/A _{BMS}]

Motor voltage calculation:

For proper motor selection, the voltage is also important, which must be applied by servo driver. Maximum voltage is calculated by:

$$V_{mot} = \sqrt{\left(\frac{v_{max} * K_{BEMF}}{\sqrt{3}} + \frac{F_p}{K_F} * R_{25} * \frac{\sqrt{2}}{2}\right)^2 + \left(\sqrt{2} \frac{F_P * L_p}{K_F * 2 * \tau}\right)^2}$$

Where is:

V _{max}	maximum velocity	[m/s]
K _{BMF}	motor induction voltage Phase to Phase peak (you can find it in motor specification)	[V/m/s]
K _F	Force constant (you can find it in motor parameters)	[N/A _{RMS}]
F _p	peak force	[N]
R25	Phase to phase resistance (you can find it in motor specification)	[Ω]
L _P	Phase to phase inductance	[H]
τ	Magnet pitch (you can find it in motor specification)	[m]

Driver available voltage can be calculated by

 $V_{driver} = \frac{\sqrt{2} \, V_{supply}}{\sqrt{3}} * \, 0.8$

Where is:

upply driver supply voltage (for example 230 V AC or 400 V AC) [V _{RMS}]
--

Motor selection condition:

Driver voltage must be higher as max motor voltage.

V_{driver} > V_{mot}

Selection example

I. Definition of motion profile

- Motion distance L = 2 m -
- Moving time t = 2 s
- Acceleration time $t_a = 0.5$ s
- Pause t_{off} = 1 s
- Moving mass m_{load} = 50 kg
 Friction coefficient K_{fri} = 0,01
- α = 0°

Average velocity:

$$V = \frac{L}{t} = \frac{2}{2} = \mathbf{1} \ \mathbf{m/s}$$

Max speed is defined as:

$$V_{max} = \frac{L}{t - t_a} = \frac{2}{2 - 0.5} = \mathbf{1}, \mathbf{33} \ \mathbf{m/s}$$

Acceleration/deceleration are defined by:

$$a = \frac{V_{max}}{t_a} = \frac{1,33}{0,5} = 2,66 \ m/s^2$$

II. Continuous and peak force calculation

Peak force:

 $F_{mass} = a * m_{load} = 2,66 * 50 = 133,3 N$

 $F_{fri} = K_{fri}(g * m_{load} * cos\alpha + F_A) = 0,01(9,72 * 50 * cos0 + 985) = 14,47 N$

$$F_{incl} = m_{load} * g * sin\alpha = \mathbf{0} \mathbf{N}$$

$$F_p = F_{mass} + F_{fri} + F_{incl} = 133,3 + 14,47 = 147,8 N$$

Motor related parameters, can be found in motor specification:

- Attraction force $F_{A=}$ 958 N

RMS force:

$$F_{C} = \sqrt{\frac{F_{p}^{2} * t_{a} + (F_{fri} + F_{inc})^{2} * (t - 2t_{a}) + (F_{mass} + F_{incl} - F_{fri})^{2} * t_{a}}{t + t_{off}}}$$
$$= \sqrt{\frac{147,8^{2} * 0,5 + 14,47^{2} * (2 - 2 * 0,5) + (133,3 + 0 - 14,47)^{2} * 0,5}{2 + 1}} = 77,88 N$$

Motor related parameters, can be found in motor specification:

- Attraction force F_{A =} 958 N

III. Motor selection

Motor max current:

 $I_{MAX} = \frac{F_p}{K_F} = \frac{147.8}{55.5} = 2,66 \text{ Arms} < 9,72 \text{ Arms}$

Motor continuous current:

 $I_{RMS} = \frac{F_c}{K_F} = \frac{77,88}{55,5} = 1,4 \text{ Arms} < 3,24 \text{ Arms}$

Motor related parameters, can be found in motor specification:

- Attraction force $F_A = 958 \text{ N}$ $K_F = 55,5 \text{ N/A}_{rms}$ $I_C = 3,24 \text{ Arms}$ $I_P = 9,72 \text{ Arms}$

Motor voltage calculation:

For proper motor selection also voltage is important, which must be applied by servo driver. Maximum voltage is calculated by:

$$V_{max} = \sqrt{\left(\frac{v_{max} * K_{BEMF}}{\sqrt{3}} + \frac{F_p}{K_F} * R_{25} * \frac{\sqrt{2}}{2}\right)^2 + \left(\sqrt{2} \frac{F_p * L_p}{K_F * 2 * \tau}\right)^2}$$
$$= \sqrt{\left(\frac{1,33 * 35}{\sqrt{3}} + \frac{147,8}{55,5} * 4,75 * \frac{\sqrt{2}}{2}\right)^2 + \left(\sqrt{2} \frac{147,8 * 0,022}{55,5 * 2 * 0,03}\right)^2} = 35,9 V$$

Motor related parameters, can be found in motor specification:

- Attraction force F_{A =} 958 N
- $K_{M} = 55,5 \text{ N/A}_{RMS}$ $K_{BMF} = 35 \text{ V/m/s}$ $R_{25} = 4,75 \Omega$ $L_{p} = 22 \text{ mH}$ T = 30 mm

Driver available voltage:

V_{supply} = 230 Vac

$$V_{driver} = \frac{\sqrt{2} \, V_{supply}}{\sqrt{3}} * 0.8 = \frac{\sqrt{2} * 230}{\sqrt{3}} * 0.8 = \mathbf{150}, \mathbf{23} \, \mathbf{V} > \mathbf{36}, \mathbf{2} \, \mathbf{V}$$